skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bauer, Franz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tidal disruption events (TDEs) could be an important growth channel for massive black holes in dwarf galaxies. Theoretical work suggests that the observed active galactic nuclei (AGNs) in dwarf galaxies are predominantly TDE-powered. To assess this claim, we perform variability analyses on the dwarf-hosted AGNs detected in the 7 Ms Chandra Deep Field-South survey, with observations spanning ≈16 yr. Based on the spectral energy distribution modeling withx-cigale, we select AGNs hosted by dwarf galaxies (stellar mass below 1010M). We focus on X-ray sources with full-band detections, leading to a sample of 78 AGNs (0.122 ≤z≤ 3.515). We fit the X-ray light curves with a canonical TDE model oft−5/3and a constant model. If the former outperforms the latter in fitting quality for a source, we consider the source as a potential TDE. We identify five potential TDEs, constituting a small fraction of our sample. Using true- and false-positive rates obtained from fitting models to simulated light curves, we perform Bayesian analysis to obtain the posterior of the TDE fraction for our sample. The posterior peaks close to zero (2.56%), and we obtain a 2σupper limit of 9.80%. Therefore, our result indicates that the observed AGNs in dwarf galaxies are not predominantly powered by TDEs. 
    more » « less
    Free, publicly-accessible full text available January 30, 2026
  2. Abstract With a small sample of fast X-ray transients (FXTs) with multiwavelength counterparts discovered to date, their progenitors and connections toγ-ray bursts (GRBs) and supernovae (SNe) remain ambiguous. Here, we present photometric and spectroscopic observations of SN 2025kg, the SN counterpart to the FXT EP 250108a. Atz= 0.17641, this is the closest known SN discovered following an Einstein Probe (EP) FXT. We show that SN 2025kg’s optical spectra reveal the hallmark features of a broad-lined Type Ic SN. Its light-curve evolution and expansion velocities are comparable to those of GRB-SNe, including SN 1998bw, and two past FXT-SNe. We present JWST/NIRSpec spectroscopy taken around SN 2025kg’s maximum light, and find weak absorption due to HeI1.0830μm and 2.0581μm and a broad, unidentified emission feature at ∼4–4.5μm. Further, we observe broadened Hαin optical data at 42.5 days that is not detected at other epochs, indicating interaction with H-rich material. From its light curve, we derive a56Ni mass of 0.2–0.6M. Together with our companion Letter, our broadband data are consistent with a trapped or low-energy (≲1051erg) jet-driven explosion from a collapsar with a zero-age main-sequence mass of 15–30M. Finally, we show that the sample of EP FXT-SNe supports past estimates that low-luminosity jets seen through FXTs are more common than successful (GRB) jets, and that similar FXT-like signatures are likely present in at least a few percent of the brightest Type Ic-BL SNe. 
    more » « less
    Free, publicly-accessible full text available July 16, 2026
  3. Strong gravitational magnification enables the detection of faint background sources and allows researchers to resolve their internal structures and even identify individual stars in distant galaxies. Highly magnified individual stars are useful in various applications, including studies of stellar populations in distant galaxies and constraining dark matter structures in the lensing plane. However, these applications have been hampered by the small number of individual stars observed, as typically one or a few stars are identified from each distant galaxy. Here, we report the discovery of more than 40 microlensed stars in a single galaxy behind Abell 370 at redshift of 0.725 (dubbed ‘the Dragon arc’) when the Universe was half of its current age, using James Webb Space Telescope observations with the time-domain technique. These events were found near the expected lensing critical curves, suggesting that these are magnified stars that appear as transients from intracluster stellar microlenses. Through multi-wavelength photometry, we constrained their stellar types and found that many of them are consistent with red giants or supergiants magnified by factors of hundreds. This finding reveals a high occurrence of microlensing events in the Dragon arc and demonstrates that time-domain observations by the James Webb Space Telescope could lead to the possibility of conducting statistical studies of high-redshift stars. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  4. ABSTRACT We present broad-band radio flux-density measurements supernova (SN) 1996cr, made with MeerKAT, ATCA, and ALMA, and images made from very long baseline interferometry (VLBI) observations with the Australian Long Baseline Array. The spectral energy distribution of SN 1996cr in 2020, at age t ∼8700 d, is a power-law, with flux density, S ∝ ν−0.588 ± 0.011 between 1 and 34 GHz, but may steepen at >35 GHz. The spectrum has flattened since t = 5370 d (2010). Also since t = 5370 d, the flux density has declined rapidly, with $$S_{\rm 9 \, GHz} \propto t^{-2.9}$$. The VLBI image at t = 8859 d shows an approximately circular structure with a central minimum reminiscent of an optically-thin spherical shell of emission. For a distance of 3.7 Mpc, the average outer radius of the radio emission at t = 8859 d was (5.1 ± 0.3) × 1017 cm, and SN 1996cr has been expanding with a velocity of 4650 ± 1060 km s−1 between t = 4307 and 8859 d. It must have undergone considerable deceleration before t = 4307 d. Deviations from a circular shell structure in the image suggest a range of velocities up to ∼7000 km s−1, and hint at the presence of a ring- or equatorial-belt-like structure rather than a complete spherical shell. 
    more » « less
  5. Abstract “Changing-look” active galactic nuclei (CL-AGNs) challenge our basic ideas about the physics of accretion flows and circumnuclear gas around supermassive black holes. Using first-year Sloan Digital Sky Survey V (SDSS-V) repeated spectroscopy of nearly 29,000 previously known active galactic nuclei (AGNs), combined with dedicated follow-up spectroscopy, and publicly available optical light curves, we have identified 116 CL-AGNs where (at least) one broad emission line has essentially (dis-)appeared, as well as 88 other extremely variable systems. Our CL-AGN sample, with 107 newly identified cases, is the largest reported to date, and includes ∼0.4% of the AGNs reobserved in first-year SDSS-V operations. Among our CL-AGNs, 67% exhibit dimming while 33% exhibit brightening. Our sample probes extreme AGN spectral variability on months to decades timescales, including some cases of recurring transitions on surprisingly short timescales (≲2 months in the rest frame). We find that CL events are preferentially found in lower-Eddington-ratio (fEdd) systems: Our CL-AGNs have afEdddistribution that significantly differs from that of a carefully constructed, redshift- and luminosity-matched control sample (Anderson–Darling test yieldingpAD≈ 6 × 10−5; medianfEdd≈ 0.025 versus 0.043). This preference for lowfEddstrengthens previous findings of higher CL-AGN incidence at lowerfEdd, found in smaller samples. Finally, we show that the broad Mgiiemission line in our CL-AGN sample tends to vary significantly less than the broad Hβemission line. Our large CL-AGN sample demonstrates the advantages and challenges in using multi-epoch spectroscopy from large surveys to study extreme AGN variability and physics. 
    more » « less
  6. Abstract We perform X-ray spectral analyses to derive the characteristics (e.g., column density, X-ray luminosity) of ≈10,200 active galactic nuclei (AGNs) in the XMM-Spitzer Extragalactic Representative Volume Survey, which was designed to investigate the growth of supermassive black holes across a wide dynamic range of cosmic environments. Using physical torus models (e.g., Borus02) and a Bayesian approach, we uncover 22 representative Compton-thick (CT;NH> 1.5 × 1024cm−2) AGN candidates with good signal-to-noise ratios as well as a large sample of 136 heavily obscured AGNs. We also find an increasing CT fraction (fCT) from low (z< 0.75) to high (z> 0.75) redshift. Our CT candidates tend to show hard X-ray spectral shapes and dust extinction in their spectral energy distribution fits, which may shed light on the connection between AGN obscuration and host-galaxy evolution. 
    more » « less
  7. Abstract Active dwarf galaxies are important because they contribute to the evolution of dwarf galaxies and can reveal their hosted massive black holes. However, the sample size of such sources beyond the local universe is still highly limited. In this work, we search for active dwarf galaxies in the recently completed XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS). XMM-SERVS is currently the largest medium-depth X-ray survey covering 13 deg2in three extragalactic fields, which all have well-characterized multiwavelength information. After considering several factors that may lead to misidentifications, we identify 73 active dwarf galaxies atz< 1, which constitutes the currently largest X-ray-selected sample beyond the local universe. Our sources are generally less obscured than predictions based on the massive-AGN (active galactic nucleus) X-ray luminosity function and have a low radio-excess fraction. We find that our sources reside in environments similar to those of inactive dwarf galaxies. We further quantify the accretion distribution of the dwarf-galaxy population after considering various selection effects and find that it decreases with X-ray luminosity, but redshift evolution cannot be statistically confirmed. Depending on how we define an AGN, the active fraction may or may not show a strong dependence on stellar mass. Their Eddington ratios and X-ray bolometric corrections significantly deviate from the expected relation, which is likely caused by several large underlying systematic biases when estimating the relevant parameters for dwarf galaxies. Throughout this work, we also highlight problems in reliably measuring photometric redshifts and overcoming strong selection effects for distant active dwarf galaxies. 
    more » « less
  8. Abstract We present multiwavelength high-spatial resolution (∼0.″1, 70 pc) observations of UGC 4211 at z = 0.03474, a late-stage major galaxy merger at the closest nuclear separation yet found in near-IR imaging (0.″32, ∼230 pc projected separation). Using Hubble Space Telescope/Space Telescope Imaging Spectrograph, Very Large Telescope/MUSE+AO, Keck/OSIRIS+AO spectroscopy, and the Atacama Large Millimeter/submillimeter Array (ALMA) observations, we show that the spatial distribution, optical and near-infrared emission lines, and millimeter continuum emission are all consistent with both nuclei being powered by accreting supermassive black holes (SMBHs). Our data, combined with common black hole mass prescriptions, suggest that both SMBHs have similar masses, log M BH / M ⊙ ∼ 8.1 (south) and log M BH / M ⊙ ∼ 8.3 (north), respectively. The projected separation of 230 pc (∼6× the black hole sphere of influence) represents the closest-separation dual active galactic nuclei (AGN) studied to date with multiwavelength resolved spectroscopy and shows the potential of nuclear (<50 pc) continuum observations with ALMA to discover hidden growing SMBH pairs. While the exact occurrence rate of close-separation dual AGN is not yet known, it may be surprisingly high, given that UGC 4211 was found within a small, volume-limited sample of nearby hard X-ray detected AGN. Observations of dual SMBH binaries in the subkiloparsec regime at the final stages of dynamical friction provide important constraints for future gravitational wave observatories. 
    more » « less
  9. Abstract We determine the low-redshift X-ray luminosity function, active black hole mass function (BHMF), and Eddington ratio distribution function (ERDF) for both unobscured (Type 1) and obscured (Type 2) active galactic nuclei (AGNs), using the unprecedented spectroscopic completeness of the BAT AGN Spectroscopic Survey (BASS) data release 2. In addition to a straightforward 1/ V max approach, we also compute the intrinsic distributions, accounting for sample truncation by employing a forward-modeling approach to recover the observed BHMF and ERDF. As previous BHMFs and ERDFs have been robustly determined only for samples of bright, broad-line (Type 1) AGNs and/or quasars, ours are the first directly observationally constrained BHMF and ERDF of Type 2 AGNs. We find that after accounting for all observational biases, the intrinsic ERDF of Type 2 AGNs is significantly more skewed toward lower Eddington ratios than the intrinsic ERDF of Type 1 AGNs. This result supports the radiation-regulated unification scenario, in which radiation pressure dictates the geometry of the dusty obscuring structure around an AGN. Calculating the ERDFs in two separate mass bins, we verify that the derived shape is consistent, validating the assumption that the ERDF (shape) is mass-independent. We report the local AGN duty cycle as a function of mass and Eddington ratio, by comparing the BASS active BHMF with the local mass function for all supermassive black holes. We also present the log N − log S of the Swift/BAT 70 month sources. 
    more » « less
  10. Abstract We report the discovery of a new “changing-look” active galactic nucleus (CLAGN) event, in the quasar SDSS J162829.17+432948.5 at z = 0.2603, identified through repeat spectroscopy from the fifth Sloan Digital Sky Survey (SDSS-V). Optical photometry taken during 2020–2021 shows a dramatic dimming of Δ g ≈ 1 mag, followed by a rapid recovery on a timescale of several months, with the ≲2 month period of rebrightening captured in new SDSS-V and Las Cumbres Observatory spectroscopy. This is one of the fastest CLAGN transitions observed to date. Archival observations suggest that the object experienced a much more gradual dimming over the period of 2011–2013. Our spectroscopy shows that the photometric changes were accompanied by dramatic variations in the quasar-like continuum and broad-line emission. The excellent agreement between the pre- and postdip photometric and spectroscopic appearances of the source, as well as the fact that the dimmest spectra can be reproduced by applying a single extinction law to the brighter spectral states, favor a variable line-of-sight obscuration as the driver of the observed transitions. Such an interpretation faces several theoretical challenges, and thus an alternative accretion-driven scenario cannot be excluded. The recent events observed in this quasar highlight the importance of spectroscopic monitoring of large active galactic nucleus samples on weeks-to-months timescales, which the SDSS-V is designed to achieve. 
    more » « less